


























































































IT Geek's Blog






the geek life of Software Developer


















































































































































          
        
Thursday, September 23, 2010


          
        






















Populating Data to PDF Forms for Better Prints









There are often situations, when your client wants series of Print out of form with data populated dynamically. These forms are designed Official and follows a legal format. In designing, the issue which frustrates designers a lot is uneven layout in different Browsers. Same issue occurs when we want to print from a Web Page (CSS for Print) or Document (Office Word). Luckily, for that purpose we have a perfect solution, and that is PDF (Portable Document Format). PDF Format always prints same on paper as we see on the screen (like WYSIWYG). The scope of this article is to show how to utilize “iTextSharp” Tool to insert data into the fields of a PDF File. I will try to demonstrate all the necessary controls that are used in forms.






Creating PDF Form Template



Our first step will be creating a PDF form, which we will use as a Template. You will need Adobe Lifecycle Designer. For demonstration purpose, we will use one of the form templates in the Adobe Lifecycle called Order Form. Click on New and select "Based on Template" and press next. Now just keep pressing next and leave the default settings as it is until Finish. At the finish step, I had unchecked both the Email and Print button, it’s your wish if you want to keep them or not. Last, click Finish. You will end up something like this.








Now we have a nice looking form, which have all the elements we need, save the form as PDF File. So, now that we have done with PDF Form. Let's get into coding!


Implementation



Start your Visual Studio and create a new C# Website. Drag-n-Drop the PDF file we just created into the Project root.










Now we need to add the "iTextSharp" assembly to our project in order to utilize it. Click here to download the iTextSharp DLL assembly. After download, right click on the project, and click “Add Reference…” from the menu.










And then under Browse tab specify the the path of the iTextSharp DLL file.



Now open the code behind file of the Default page i.e. Default.aspx.cs and add the following code into Page_Load method.



Response.ContentType = "application/pdf";



PdfReader pdfReader = new PdfReader(Server.MapPath("~/Template.pdf"));

PdfStamper pdfStamper = new PdfStamper(pdfReader, Response.OutputStream);



AcroFields pdfFormFields = pdfStamper.AcroFields;



pdfFormFields.SetField("PODate", DateTime.Now.Date.ToShortDateString());

pdfFormFields.SetField("OrderedByCompany", "XYZ Company, Inc.");

pdfFormFields.SetField("OrderedByAddress", "XYZ Street");

pdfFormFields.SetField("OrderedByStateProvince", "XY");

pdfFormFields.SetField("OrderedByZipCode", "111");

pdfFormFields.SetField("OrderedByPhone", "111-1111-111");

pdfFormFields.SetField("OrderedByFax", "111-1111-111");

pdfFormFields.SetField("OrderedByContactName", "Mr. XYZ");



pdfFormFields.SetField("SameAsAbove", "1");



pdfFormFields.SetField("DeliverToCompanyName", "XYZ Company, Inc.");

pdfFormFields.SetField("DeliverToAddress", "XYZ Street");

pdfFormFields.SetField("DeliverToStateProv", "XY");

pdfFormFields.SetField("DeliverToZipCode", "111");

pdfFormFields.SetField("DeliverTotPhone", "111-1111-111");

pdfFormFields.SetField("DeliverToFax", "111-1111-111");

pdfFormFields.SetField("DeliverToContactName", "Mr. XYZ");



pdfFormFields.SetField("Item", "# 85351");



pdfFormFields.SetField("Description", "HTC TOUCH DIAMOND");

pdfFormFields.SetField("Quantity", "1");

pdfFormFields.SetField("UnitPrice", "300");

pdfFormFields.SetField("Amount", "300");

pdfFormFields.SetField("Subtotal", "300");

pdfFormFields.SetField("StateTaxRate", "State Tax");

pdfFormFields.SetField("StateTax", "10");

pdfFormFields.SetField("FederalTaxRate", "Federal Tax");

pdfFormFields.SetField("FederalTax", "5");

pdfFormFields.SetField("ShippingChargeRate", "Shipping");

pdfFormFields.SetField("ShippingCharge", "20");

pdfFormFields.SetField("GrandTotal", "335");



pdfFormFields.SetField("Payment", "2");

pdfFormFields.SetField("Payable", "");

pdfFormFields.SetField("CardType", "2");



pdfFormFields.SetField("CardNumber", "XXXX-XXXX-XXXX-XXXX");

pdfFormFields.SetField("ExpirationDate", DateTime.Now.Date.AddMonths(6).ToShortDateString());

pdfFormFields.SetField("CardholderName", "Mr. XYZ");



pdfStamper.FormFlattening = true;

pdfStamper.Close();





In the very first line of the code we set response type of our default page to pdf so that browser will understand and it will call Adobe Reader to render page inside the browser.



Response.ContentType = "application/pdf";



Further we open our Order Form PDF for reading through PdfReader. PdfReader in used to input PDF and PdfStamper is used for output PDF. Next we tell PdfStamper to put all the output into the Response object. Because we will be sending PDF contents as our response back to browser.



When we created the form it consists of few fields like TextBox, Checkbox, RadioButton List. Like in ASP.NET Web Forms every control has a unique id, same in a PDF form every control has a unique ID. Using AcroFields class, we will insert our values into the fields of the PDF form. We only need to know the ID of the field.



pdfFormFields.SetField("{FIELD ID}", "{FIELD VALUE}");



At last we trigger the PdfStamper to insert the content to response by closing it. And we make all the Fields read-only by enabling the Form Flattening.



pdfStamper.FormFlattening = true;

pdfStamper.Close();




Preview








Now you can print it out and it will exactly same as we see in preview.




Download Code

You can download the code here which also include iTextSharp assembly from here.










Posted on


Thursday, September 23, 2010











Email ThisBlogThis!Share to TwitterShare to FacebookShare to Pinterest





Labels:
ASP.NET,
iTextSharp,
pdf












3 comments:





	
AyushSeptember 27, 2010 at 1:14 PM
Nice work with PDF
ReplyDelete
Replies

Reply







	
Taylor November 1, 2018 at 9:46 AM
A Real Estate operator utilizes shapes particular to every region. In Maryland there are particular structures for every region in the state.  pdf to excel

ReplyDelete
Replies

Reply




	
StevenJanuary 14, 2019 at 1:58 AM
Advanced evidence PDF records are generally messaged, and in this way are a decreased document measure rendition.  altocompresspdf.com

ReplyDelete
Replies

Reply





Add comment

Load more...




























        
      



Newer Post


Older Post

Home






Subscribe to:
Post Comments (Atom)



















Search This Blog




	

	














About Me


Charandeep Singh
I am a software guy, currently working and living in Gurgaon, India. I love listening to music, watching movies or TV, photography, playing simulation games. Connect with me on Twitter @it_geek. I also take photos, follow me on Instagram @charandeepsingh1.







Twitter Updates


Tweets by @it_geek







Popular Posts


	







Reading Excel Spreadsheets with PHP

 PHP is yet most powerful language when it comes to deal with different data formats like SQL Results, XML Files etc. To improve the functio...






	







My First DSLR Camera - Nikon D90

   After a long time shooting with Point & Shoot, I finally decided to go with DSLR because of its ability to control exposure in shots ...






	







Populating Data to PDF Forms for Better Prints

 There are often situations, when your client wants series of Print out of form with data populated dynamically. These forms are designed Of...






	







Moving to ASP.NET MVC

 I was a long time PHP guy. So, I had grown up with a thought that PHP Language is server thing and has nothing to do with HTML. That is act...






	







If Websites were People...

















Blog Archive




	



        ► 
      



2013

(1)
	



        ► 
      



May

(1)






	



        ▼ 
      



2010

(5)
	



        ► 
      



December

(1)



	



        ▼ 
      



September

(1)
	Populating Data to PDF Forms for Better Prints





	



        ► 
      



August

(1)



	



        ► 
      



July

(1)



	



        ► 
      



June

(1)






	



        ► 
      



2009

(13)
	



        ► 
      



August

(5)



	



        ► 
      



July

(2)



	



        ► 
      



June

(5)



	



        ► 
      



May

(1)

















	


	











































	


	








Copyright © 2018. All Rights Reserved. Simple theme. Powered by Blogger.



















































